

PyQchem

A python wrapper for Q-Chem software (https://www.q-chem.com).

Contents

	Introduction

	Installation

	Get started

	Advanced input

	Symmetry

	Error handling

	Extra information

	Tutorial

	Public API

	Troubleshooting

PyQchem is being developed by Abel Carreras within David Casanova’s group
at Donostia International Physics Center (DIPC), Euskadi, Spain.

Introduction

PyQchem in a python interface for Q-Chem, a popular general-purpose
quantum chemistry maintained and distributed by Q-Chem, Inc., located
in Pleasanton, California, USA.

PyQchem allows to take advantage of Python’s simple and powerful syntax
to automatize Q-Chem calculations. For this purpose PyQchem implements
an input generation class, a calculation submitting function and a set of
flexible parsers that extracts the output information and converts in
a well structured python dictionary. These parsers are intended to be as
homogeneous as possible among the different methods producing a
python dictionary that contains similar entries and can be used with the
same analysis/visualization functions.

The philosophy of PyQChem is to build a homogeneous input and output
interface for the different methods implemented in Q-Chem to make the
life of Q-Chem users easier.

Main features

	Easy to use & clean python interface

	Easy to install in your personal computer or cluster, no special q-chem compilation needed.

	Output parser support for a variety of calculation.

	Modular implementation that allows to easily extend its functionality by writing new parsers and analysis functions.

Installation

PyQchem can be installed directly from the source code (python package) or via PyPI repository.
Q-Chem is not necessary to be installed in the system but, of course, it will be necessary later
on to perform calculations. Still some of pyqchem features can be used without Q-Chem.

Requirements

	Python 2.7.x/3.5+

	numpy

	scipy

	matplolib

	requests

	lxml

	wfnsympy (optional: for symmetry analysis)

	paramiko (optional: for remote calculations)

Install

	From source code

git clone https://github.com/abelcarreras/PyQchem.git pyqchem
cd pyqchem
python setup.py install --user

	From PyPI repository

pip install pyqchem --user

Q-Chem setup

PyQchem checks two environment variables to locate Q-Chem installation: $QC and $QCSCRATCH.
$QC contains the path to the root directory of Q-Chem installation. This directory
should contain a /bin directory where qchem run script is placed. $QCSCRATCH contains
the path to scratch directory.

Note

$QCAUX and $QCREF environment variables are not directly used by pyqchem but they are
used by Q-Chem to properly run. Check Q-Chem manual for further information.

Get started

A basic pyqhem script is composed of 4 steps: Defining a molecule, preparing an Q-Chem input, runing
the calculation and parsing the information.

Defining molecule

The definition of the molecule is done creating an instance of Structure class. Its initialization requires
the coordinates as a list of lists (or Nx3 numpy array), the atomic symbols of the atoms (in the same order
of the coordinates), the charge and the multiplicity. Only coordinates and symbols are mandatory, if
charge/multiplicity are not specified they will be defined as neutral/singlet.

Example of hydroxide anion:

from pyqchem import Structure

molecule = Structure(coordinates=[[0.0, 0.0, 0.0],
 [0.0, 0.0, 0.9]],
 symbols=['O', 'H'],
 charge=-1,
 multiplicity=1)

Preparing Q-Chem input

The Q-Chem input is defined using the QchemInput class. To initialize this class it is necessary an instance of
the Structure class as defined in the previous section (molecule). Afterwards the different Q-Chem keywords are
set as optional arguments to specify the calculation. In general the name of these keywords have the same name as
in Q-Chem. At this moment, only a small set of the keywords available in Q-Chem are implemented in the QchemInput
class. Refer at this class definition to check which ones are implemented. New keywords will be implemented under
request.

Example of single point calculation using unrestricted Hartree-Fock method with 6-31G basis set:

from pyqchem import QchemInput

qc_input = QchemInput(molecule,
 jobtype='sp',
 exchange='hf',
 basis='6-31G',
 unrestricted=True)

Note

In case a particular Q-Chem keyword of $REM input section in not implemented in PyQchem, extra_rem_keywords argument
can be used to include it. This argument requires a dictionary containing the keywords as dictionary keys and its
values as dictionary values. Values can be either strings or numbers.

qc_input = QchemInput(molecule,
 jobtype='sp',
 exchange='hf',
 basis='6-31G',
 extra_rem_keywords={'keyword_1': 'value',
 'keyword_2': 34}

Also for features that require a non-implemented Q-Chem input section extra_sections argument
can be used to include it. This argument requires a list of CustomSection objects
which can be imported from pyqchem.qc_input. These objects are defined by a section title, that
corresponds to the title in Q-Chem input section, and keywords that is a dictionary with the name
and value of the keywords in the section.

from pyqchem.qc_input import CustomSection

custom_section = CustomSection(title='section_title',
 keywords={'sec_keyword_1': 'text_value',
 'sec_keyword_2': 34})

custom_section_2 = CustomSection(title='section_title_2',
 keywords={'sec_keyword_1': 'text_value',
 'sec_keyword_2': 34})

qc_input = QchemInput(molecule,
 jobtype='sp',
 exchange='hf',
 basis='6-31G',
 extra_sections=[custom_section, custom_section_2]

Running calculations

Once the QchemInput is prepared you can run it using get_output_from_qchem function. This function if the core
of PyChem and makes the connection between PyQchem and Q-Chem. In order for this function to work properly
$QC and $QCSCRATCH environment variables should be defined. Refer to Q-Chem manual to learn how to set them.
By default get_output_from_qchem will assume an openMP compilation of Q-Chem were processors indicate the number
of threads to use in the calculation. If your compilation of Q-Chem is MPI then use_mpi=True should be set and
processors will correspond to the number of processors.

Get_output_from_qchem function has two main ways of operation. If no parser is specified, then the output of this
function will be a string containing the full Q-Chem output. This way can be useful to do your own treatment of the
output file or if you are not sure about the information you want to parse.

Example of simple parallel(openMP) calculation using 4 threads:

from pyqchem import get_output_from_qchem

output = get_output_from_qchem(qc_input,
 processors=4)

The second way is by defining the parser optional argument. This indicates that the output will be parsed
using the specified parser function. In the following example basic_parser_qchem function is used. This is
imported from the parser collection located at pyqchem.parsers.. Using a parser function the output of this
function becomes a python dictionary containing the parsed data.

This is similar to the example shown above using a simple parser (basic_parser_qchem) :

from pyqchem.parsers.basic import basic_parser_qchem
parsed_data = get_output_from_qchem(qc_input,
 processors=4,
 parser=basic_parser_qchem,
)

This can be done also in two steps, since the parser (basic_parser_qchem in this case) is a just regular python
function that accepts a string as argument.

output = get_output_from_qchem(qc_input, processors=4)
parsed_data = basic_parser_qchem(output)

It is simple to create a custom parser by defining a custom function with the following structure:

def custom_parser_qchem(output):
 """
 output: contains the full Q-Chem output in a string

 return: a dictionary with the parsed data
 """
 ...
 return {'property_1': prop1,
 'property_2': prop2}

Complex parsers may have optional arguments to add more control. This may be used to include parameters such as
precision, max number of cycles/states/etc to read, etc..:

def custom_parser_qchem(output, custom_option=True, custom_prec=1e-4):
 """
 output: contains the full Q-Chem output in a string
 custom_option: controls option to be used or not
 custom_prec: defines the precision of som data to be read

 return: a dictionary with the parsed data
 """
 ...

 return {'property_1': prop1,
 'property_2': prop2}

to define this optional arguments get_output_from_qchem function you should include parser_parameters argument
which requires a python dictionary. Each of the entries in this dictionary should be the name of one of the optional
arguments in the parser function whose value is the value of the argument:

parsed_data = get_output_from_qchem(qc_input,
 processors=4,
 parser=custom_parser_qchem,
 parser_parameters={'custom_option': True, 'custom_prec': 1e-4}
)

Most of the electronic information (molecular orbitals coefficients, electronic density, basis set, etc..) can be found
in fchk file generated by Q-Chem. Other information (hessian, Fock matrix, etc..) can be read from binary files generated
in the work directory. All this is stored in a dictionaty and returned by get_output_from_qchem function if
optional argument return_electronic_structure=True is used:

from pyqchem.parsers.basic import basic_parser_qchem
parsed_data, electronic_structure = get_output_from_qchem(qc_input,
 processors=4,
 parser=basic_parser_qchem,
 return_electronic_structure=True
)

as can be observed in the previous example, the return of get_output_from_qchem function contains two elements:
parsed_data and the electronic_structure. Parsed_data is a python dictionary that contains the same information
as previously described. Electronic_structure is another python dictionary that contains the information parsed from
the FCHK file.

Note

PyQchem automatically includes the Q-Chem keyword gui=2 to the input if return_electronic_structure=True is requested.

Reusing data efficiently

Pyqchem is specially focused in the automation and design of complex Q-Chem workflows. For this reason pyqchem
implements a feature to avoid redundant calculation by storing the parsed data in a pickle file. This works
seamessly, if a calculation is requested with an input equivalent to a previous one, the calculation is skip
and stored data is output instead. By default only parsed data is stored, therefore if no parser is provided
the calculation will be recomputed.

The behavior of this feature is controlled by two arguments in get_output_from_qchem function:
force_recalculation and store_full_output. force_recalculation=True forces the calculation to be calculated
even if a previous equivalent calculation already exists.
If store_full_output=True then the raw outputs are also stored. This may produce a significant
increase in size of the storage file, but it can be useful to test new parsers or to use several parsers in
the same output.

parsed_data = get_output_from_qchem(qc_input,
 processors=4,
 parser=basic_parser_qchem,
 force_recalculation=True,
 store_full_output=True
)

It is possible to set a custom storage pickle filename by using redefine_calculation_data_filename function.
This may be written at the beginning of the script to define a different storage file for each script if
multiple scripts run in the same directory at the same time.

from pyqchem.qchem_core import redefine_calculation_data_filename
redefine_calculation_data_filename('custom_file.pkl')

Advanced input

Custom guess

structure entry contains a Structure type object that can be used, for instance, in QchemInput to create a new input.
scf_guess requires a dictionary {‘alpha’: [], ‘beta’:[]} containing the molecular orbitals coefficients matrix. This
is exactly what coefficients entry contains. Using this two objects it becomes easy to use the electronic structure
of a previous calculation as a guess of a new calculation (see frequencies_simple.py example) :

qc_input = QchemInput(electronic_structure['structure],
 scf_guess=electronic_structure['coefficients']
 jobtype='sp',
 exchange='hf',
 basis='6-31G')

Custom basis set

The same can be done for basis set. QchemInput basis argument accepts predefined basis sets included in Q-Chem as
a label string (e.g. ‘sto-3g’, ‘6-31g(d,p)’,..) but also accepts custom basis sets. These basis sets should be written
as a python dictionary following the same structure as the one output in electronic_structure. These basis can be used
directly in QchemInput:

qc_input = QchemInput(electronic_structure['structure],
 scf_guess=electronic_structure['coefficients']
 jobtype='sp',
 exchange='hf',
 basis=electronic_structure['basis])

However this is may not very useful if the basis in electronic_structure is one of the predefined basis in Q-Chem.
PyQchem include a helper function to retrieve a basis set from ccRepo (http://www.grant-hill.group.shef.ac.uk/ccrepo/)
repository. This function require as argument Structure object and the name of the basis set (see: custom_basis.py example):

from pyqchem.basis import get_basis_from_ccRepo

basis_custom_repo = get_basis_from_ccRepo(molecule, 'cc-pVTZ')
qc_input = QchemInput(molecule,
 jobtype='sp',
 exchange='hf',
 basis=basis_custom_repo)

Dual basis set

The use of dual basis set can improve the performance of Q-Chem calculations. This can be used, for example, to use as
a guess a previous calculations tha uses a smaller basis set. The keyword to use this is basis2 and works in the same way
as basis. Usual basis keyword defines the new basis and basis2 keyword defines the previous (and smaller) basis.

Initial calculation using sto-3g basis set
qc_input = QchemInput(molecule,
 jobtype='sp',
 exchange='hf',
 basis='sto-3g',
)

_, ee = get_output_from_qchem(qc_input, return_electronic_structure=True)

Precise calculation with larger 6-31G basis using previous MO as guess
qc_input = QchemInput(molecule,
 jobtype='sp',
 exchange='hf',
 basis='6-31g',
 basis2=ee['basis'], # previous basis from electronic structure
 scf_guess=ee['coefficients'] # previous MO coeff as a guess
)

Usage of Solvent

Usage of solvent is implemented in pyQchem by the use of solvent_method and solvent_params. solvent_method
is a strightforward of the keyword with the same name in Q-Chem while solvent_params is a dictionary that
contains the keywords in the section $solvent in Q-Chem input. For PCM that requiere additional
parameters pcm_params keyword is used which implements the keywords of $pcm section in Q-Chem input.

qc_input = create_qchem_input(molecule,
 jobtype='sp',
 exchange='hf',
 basis='sto-3g',
 unrestricted=True,
 solvent_method='pcm',
 solvent_params={'Dielectric': 8.93}, # Cl2CH2
 pcm_params={'Theory': 'CPCM',
 'Method': 'SWIG',
 'Solver': 'Inversion',
 'Radii': 'Bondi'}
)

Symmetry

PyQchem is combined with wfnsympy to analyze the symmetry of the wave function calculated using Q-Chem.
PyQchem implements several symmetry functions that are compatible with electronic_structure dictionary.
Due to the limitations of wfnsympy at this moment only gaussian type orbitals (GTO) basis can be used.

Orbital classification

A simple function included in pyQchem is get_orbital_classification, this function classify the molecular
orbitals between PI and SIGMA. For this function to work properly the user needs to define the center ond
orientation of the molecule. Assuming that the molecule is planar center should be a point within the plane
that the atoms form and orientation is a unitary vector perpendicular to this plane.

The return of this function is a list. Each element of this list correspond to a molecular orbital (in energy order
from lower to higher) and contains two things: a label that indicates the type of orbitals (SIGMA or PI) and a float
number that indicates the degree of accuracy (from 0[None] to 1[Full]).

from pyqchem.symmetry import get_orbital_classification

orbital_types = get_orbital_classification(electronic_structure,
 center=[0.0, 0.0, 0.0],
 orientation=[0.0, 0.0, 1.0])

for i, ot in enumerate(orbital_types):
 print('{:5}: {:5} {:5.3f}'.format(i + 1, ot[0], ot[1]))

Sometimes molecules may not be planar but still some notion of pi/sigma symmetry can be extracted,
even if its only local. For this reason pyqchem implements several functions to manipulate electronic
structures (See classify_orbitals.py and advanced_symmetry.py as more complete examples)

The following example shows the use of two of these functions (get_plane, and crop_electronic_structure) to
determine the orbital symmetry (PI/SIGMA) of a fragment of a large molecule.
Get_plane allows to determine
the plane and orientation of the fragment. This function assumes that all atoms are in the same plane, so if
some atoms are out of the plane it may be more adequate to use this function with the subset of the atoms that
are more or less in a plane.
On the other hand, crop_electronic_structure modifies the MO coefficients, by setting all the basis functions
that are not centered in the atoms of the fragment to zero. This allows to do a symmetry measure of the part
of the MO orbitals that is located around the fragment.

define the atoms of the fragment
atoms_list = [0, 1, 2, 3, 4, 5]

get coordinates of the fragment
coord_fragment = electronic_structure['structure'].get_coordinates(fragment=atoms_list)

get the plane and orientation of the fragment
center, normal = get_plane(coord_fragment)

Set zero to all coefficients centered in the atoms that are not part of the fragment
electronic_structure_fragment = crop_electronic_structure(electronic_structure, atoms_list)

get classified orbitals
orbital_types = get_orbital_classification(electronic_structure_fragment,
 center=center,
 orientation=normal)

Error handling

In the previous sections it is always assumed that Q-Chem calculations always finish successfully,
but, in general, this is not true. Calculation may fail for several reasons, incorrect input parameters,
slow convergence, problems with the cluster, issues during the parser process, etc..
To handle these errors PyQchem implements two custom error classes: OutputError and ParserError.

These errors are risen during the get_output_from_qchem function execution if something has gone wrong.
If OutputError is risen means that Q-Chem calculation did not finish correctly. This may mean that the
input is incorrect or something happened with the computer that lead the calculation to crash. When this
error is risen the traceback will show the last 20 lines of the Q-Chem output where, hopefully, you will find
enough information to determine the cause of the error.

Traceback (most recent call last):
 File "/Users/abel/PycharmProjects/qchem_scripts/scripts/test_tddft.py", line 51, in <module>
 store_full_output=True,
 File "/Users/abel/PycharmProjects/qchem_scripts/pyqchem/qchem_core.py", line 330, in get_output_from_qchem
 raise OutputError(output, err)
pyqchem.errors.OutputError: Error in Q-Chem calculation:
sh: gdb: command not found
Unable to call dbx in QTraceback: No such file or directory
 http://arma.sourceforge.net/

 Q-Chem begins on Fri Jun 5 02:31:23 2020

Host:
0

 Scratch files written to /Users/abel/Scratch/export/qchem66428//

 Name = B3LP

 Q-Chem fatal error occurred in module libdft/dftcodes.C, line 599:

 Unrecognized exchange functional in XCode

 Please submit a crash report at q-chem.com/reporter

In some cases, specially when working with complex workflows it becomes useful to be able to capture these errors
to handle them automatically without finish all the workflow. This can be done by the usual try/except statements.
By capturing the error it is possible to skip the calculation, recover the error_lines and even recover the full Q-Chem
output:

try:
 parsed_data = get_output_from_qchem(qc_input,
 processors=4,
 parser=basic_optimization)
except OutputError as e:
 print('These are the error lines:\n', e.error_lines)
 print('This is the full output:\n', e.full_output)

Using the full output it is possible to try to parse the information that contains by applying the parser directly:

try:
 parsed_data = get_output_from_qchem(qc_input,
 processors=4,
 parser=basic_optimization)
except OutputError as e:
 print('Something wrong happened!:\n', e.error_lines)
 print('Recovering usable data...')
 parsed_data = basic_optimization(e.full_output)

But if the calculation is really incomplete, or the format of Q-Chem output is incompatible with the parser,
the parsing process may also fail and a ParserError will be risen. In this case the output data cannot
be recovered using this parser.

In the same way as OutputError a try/except block can be written to capture this error. A sensible to proceed
can be either skip the calculation or try another parser by nesting two try/except blocks :

try:
 parsed_data = get_output_from_qchem(qc_input,
 processors=4,
 parser=basic_optimization)
except OutputError as e:
 print('Something wrong happened!:\n', e.error_lines)
 print('Recovering usable data...')

 try:
 parsed_data = basic_optimization(e.full_output)
 except ParserError:
 print('Trying another parser')
 parsed_data = other_parser(e.full_output)

Extra information

Electronic structure

The electronic structure dictionary is designed to contain the data
from sources other than the output. Most of its contents are from the
fchk file, but also contains data from scratch files such as the hessian
and the fock matrix. Other data will be included in this dictionary in
the future.

The basic structure of the electronic structure dictionary is the following:

root
 ├── basis
 │ ├── name
 │ ├── primitive_type
 │ └── atoms(list)
 │ ├── shells (list)
 │ ├── symbol
 │ └── atomic_number
 ├── coefficients
 │ ├── alpha
 │ └── beta (optional)
 ├── mo_energies
 │ ├── alpha
 │ └── beta (optional)
 ├── number_of_electrons
 │ ├── alpha
 │ └── beta
 ├── nato_coefficients (optional)
 │ ├── alpha
 │ └── beta
 ├── nato_occupancies (optional)
 │ ├── alpha
 │ └── beta
 ├── structure
 └── overlap

Using the information of this dictionary a Fchk file can be generated. This may be used to visualize the molecular
orbitals, electronic density and other properties using an (external) visualization program.

from pyqchem.file_io import build_fchk
with open('file.fchk', 'w') as f:
 f.write(build_fchk(electronic_structure))

While electronic structure is a simple dictionary, its elements are designed to be interoperable along the
pyqchem code such as guess and basis. Some examples of this interoperability can be found in the examples folder.

Tutorial

PyQchem is python interface for Q-Chem. It allows to create Q-Chem inputs, execute Q-Chem from python, parse its
outputs and store the results in convenient python dictionaries. This is especially useful to create complex workflows
to automate frequent tasks using python programming language.

As a preparation for the incoming talk I prepared a series of exercises to introduce the very basics of PyQchem. These
exercises are preceded by a detailed explanation of the PyQchem functionality that you may need to complete them. For further
information you can check the PyQchem manual available online at: https://pyqchem.readthedocs.io/

Once you complete these exercises, you will be able to:

	Submit a simple Q-Chem calculation from python and obtain the desired results

	Use a simple loops to automate the creation of q-Chem inputs.

	Combine two Q-Chem calculation by using the outputs of the former in the input of the later.

Execution

In order to run Q-Chem calculations using PyQchem a installation of Q-Chem is necessary. Q-Chem is currently installed
in ATLAS cluster along with PyQchem, hence if you use ATLAS it is not necessary any further installation to complete these exercises.
PyQchem will be loaded along Q-Chem when loading qchem_group/qchem_trunk modules as usual

export MODULEPATH=/scratch/user/SOFTWARE/privatemodules:$MODULEPATH
export QCSCRATCH=/scratch/user/QCHEM_SCRATCH
module load qchem_group

python script.py > output.txt

Note

Since the exercises contained in this document are quite short, you can run them directly in ATLAS
(so you don’t have to wait for the queue system) just connect to ATLAS and export MODULEPATH (as shown above)
and load qchem_group module.

However, it may be useful to have PyQchem installed locally in your computer to prepare scripts, specially when using some
advanced python editors like PyCharm, Clion, VCode, etc.
PyQchem can be downloaded and installed in a MAC/Linux machine from the official python repository (https://pypi.org)
by using the command

pip install pyqchem

In some python installations this command may need sudo permissions. If this is the case, then you can specify user’s home
installation path by

pip install pyqchem --user

this way the installation will be done in your home and will not require superuser permissions.

Basic concepts

In order to perform a Q-Chem calculation, two main pieces of information are needed as input:

	the molecular structure

	the parameters of the calculation (method/basis set/etc..)

To define the molecular structure, PyQchem uses a Structure class that can be imported as:

from pyqchem import Structure

Using this class you can create an instance of this class. An instance can be understood as a variable with type Structure.
To create an instance it is necessary to initialize it with the necessary parameters. In the case of Structure class
these parameters are coordinates, symbols, charge and multiplicity:

from pyqchem import Structure

hydroxide = Structure(coordinates=[[0.0, 0.0, 0.0],
 [0.0, 0.0, 0.9]],

 symbols=['O', 'H'],
 charge=-1,
 multiplicity=1)

As can be seen in the example above, both coordinates and symbols are simple python lists separated by comma and
limited by [and] characters. In the case of symbols list, its elements are character strings which are surrounded
by quotes. charge and multiplicity are simple integer numbers and are optional parameters. In case of not being defined,
charge will be set to 0 and multiplicity to 1.

This instance has all the methods defined for the Structure class. Methods can be understood as functions associated
to a particular class instance. To access to these methods the operator ‘.’ is used followed by the method’s name.
The following example shows some of the methods defined in Structure class:

variables
ne = hydroxide.number_of_electrons
alpha = hydroxide.alpha_electrons
beta = hydroxide.beta_electrons

print('Number of electrons:', ne, '(', alpha, beta, ')')

functions
xyz_file_txt = hydroxide.get_xyz(title='hydroxide anion')
print(xyz_file_txt)

Note

In this example xyz_file_txt is a string that is printed on screen using print() function. You can write
this string into a file using python language, for example:

open('file_name.xyz').write(xyz_file_txt)

The definition of the parameters is done by the QchemInput class.
Using this class we define an instance of this class as:

from pyqchem import QchemInput

oh_input = QchemInput(molecule,
 jobtype='sp',
 exchange='hf',
 basis='6-31G',
 unrestricted=True)

In a similar way as the Structure class, to initialize a QchemInput instance several parameters are necessary.
In this case the first parameter is molecule. molecule is an instance of the Structure class, like the one that we
defined before (hydroxide). All the other parameters are optional and have default parameters in case of not being defined.
The name of these parameters is designed to be equal or similar to the respective Q-Chem keywords. The list of available
parameters is being updated continuously and can be found in: https://github.com/abelcarreras/PyQchem/blob/master/pyqchem/qc_input.py

As in the case of Structure class, several methods are defined for QchemInput. The main one is get_txt().
This method returns a string containing the input in Q-Chem format. This can be used to check the exact input that
will be submitted to Q-Chem to do the calculation.

input_txt = oh_input.get_txt()
print(input_txt)

Other useful methods are get_copy() and update_input(). These methods are useful to modify already created inputs. For example,
in case you want to prepare multiple different inputs with few differences you can create a general input, make
multiple copies of it and modify them:

input_txt = oh_input.get_txt()
print(input_txt)

general_input = QchemInput(molecule,
 jobtype='sp',
 exchange='hf')

input_basis_1 = general_input.get_copy()
input_basis_2 = general_input.get_copy()

input_basis_1.update_input({'basis': 'sto-3g', 'mem_total' : 2000})
input_basis_2.update_input({'basis': '6-31G', 'mem_total' : 1000})

Finally, to run the calculation get_output_from_qchem function is used. The first argument of this function is
a QchemInput instance. There are several optional parameters for this function mainly related to computer stuff
(which do not affect the results of the calculation). A good representative is processors, that indicate the number of
processor cores to use in the calculation (in openMP compilation) or the number of MPI processes (in MPI compilation).

Note

In ATLAS cluster Q-Chem is compiled using openMP.

from pyqchem import get_output_from_qchem

output = get_output_from_qchem(oh_input,
 processors=4)

print(output)

The output of this function is a string containing the full Q-Chem output. In this example the output
is printed in the screen. Combining all these functions together we obtain a simple script that runs
a single Q-Chem calculation and prints its output:

from pyqchem import Structure, QchemInput, get_output_from_qchem

hydroxide = Structure(coordinates=[[0.0, 0.0, 0.0],
 [0.0, 0.0, 0.9]],

 symbols=['O', 'H'],
 charge=-1,
 multiplicity=1)

oh_input = QchemInput(hydroxide,
 jobtype='sp',
 exchange='hf',
 basis='6-31G',
 unrestricted=True)

output = get_output_from_qchem(oh_input,
 processors=4)

print(output)

Practical exercises

a) Use PyQchem to write a script that generates a set of Q-Chem inputs to do a HF calculation of the methane molecule
using the following basis sets: STO-3G, 6-31G, DZ, cc-pVDZ and aug-cc-pVDZ. Use python’s open() function to store
these inputs in different files.

b) Modify the previous script to run the generated inputs using get_output_from_qchem() function to obtain the corresponding
Q-Chem outputs. Store these outputs in different files.

c) [ADVANCED] Make use of python language tools such as list comprehension and for/while loops to make this
exercise, obtaining a cleaner and more extendable code.

Parsing data

Being able to automatically generate Q-Chem inputs and outputs can be pretty useful. However the key feature of
PyQchem is the use of parsers to extract the output information. A parser is just a function that takes a text string,
finds the important data and places it in an organized structure. In the case of PyQchem this structure is a python dictionary.

Here an example of such a function:

def parser_example(output):
 data_dict = {}
 enum = output.find('Total energy in the final basis set')
 data_dict['scf_energy'] = float(output[enum: enum+100].split()[8])
 return data_dict

print(output)

This function does 3 main things:

	Define a python dictionary using {} syntax.

	Get the location of the data that we are interested in the output, in this case the SCF energy.

	Convert the interesting data from text format to number format using float() function and store them in the dictionary.

Note

The use of [ini: fin] in strings to get a substring is called slicing. This is very useful in parser functions
since you can divide a long output string in small strings that contain the data. On the other hand split()
method divides a text in words and generates a list that can be accessed by indices.

text = 'this may be a long text with lots of words'
subtext = text[0: 11] # Result: 'this may be'
words = subtext.split() # Result: ['this', 'may', 'be']
word = words[1] # Result: 'may'

Note

In contrast to other languages like Fortran Python indices start from 0 (not 1!).

Parser functions can be explicitly written in the python script just after getting the Q-Chem output:

def parser_example(output):
 data_dict = {}
 enum = output.find('Total energy in the final basis set')
 data_dict['scf_energy'] = float(output[enum: enum+100].split()[8])
 return data_dict

(...)

output = get_output_from_qchem(oh_input)

parsed_data = parser_example(output)
print(parsed_data) # Result: {'scf_energy': 1.234567}

The above example will print a dictionary with a single item with key ‘scf_energy’ and the energy as a value. A python
dictionary works in a similar way as list/vectors, but instead of accessing the elements with an integer index we use
a key string.

energy = parser_data['scf_energy']
print ('The energy is ', energy)

As may be expected, a dictionary can contain multiple items so accessing them via keys is a basic functionality.
The values of a dictionary can be almost anything: strings, numbers, lists … and even other dictionaries. This
generates a very common structure of dictionaries inside dictionaries used to organize the data in a tree-like structure.

sub_dict = {}
dict = {}

sub_dict['inside'] = [4, 3, 5]
dict['outside'] = sub_dict

print(dict['outside']['inside']) # Result: [4, 3, 5]
print(dict['outside']['inside'][2]) # Result: 5

Note

Technically a dictionary key can be other objects aside from strings but to make it simple we will use strings.

The use of parsers in PyQchem is kind of a basic feature, for this reason get_output_from_qchem() function has an
optional argument that requires a parser function:

def parser_example(output):
 data_dict = {}
 enum = output.find('Total energy in the final basis set')
 data_dict['scf_energy'] = float(output[enum: enum+100].split()[8])
 return data_dict

(...)

parsed_data = get_output_from_qchem(oh_input, parser=parser_example)

print(parsed_data) # Result: {'scf_energy': 1.234567}

As can be observed in the example above, using parser argument transforms the output of get_output_from_qchem into
a dictionary with the parsed output. This makes the script shorter and cleaner.
PyQchem package includes parsers written for the most common types of calculations. These can be found in the parsers
folder: (https://github.com/abelcarreras/PyQchem/tree/master/pyqchem/parsers). To use them, you just need to use import
statement:

from pyqchem.parsers.basic import basic_parser_qchem

(...)

parsed_data = get_output_from_qchem(oh_input,
 parser=basic_parser_qchem)

Practical exercises

a) Create a parser function to get the following properties from a HF calculation: Sum of atomic charges & Sum of spin charges.
You can use the same system as in the fist example (methane with STO-3G basis set) to test it.

b) Use the basic parser included in PyQchem (basic_parser_qchem) to write a script
that calculates and the orbital energies of methane molecule.

c) [ADVANCED] Use a loop (for/while) to calculate the scf energy of the hydrogen molecule at different geometries (bond length)
to study the dissociation of hydrogen molecule. Print the results as two columns (bond length and scf energy)

Note

During the execution a calculation_data.pkl file is generated. This stores data of previous calculations
(see manual for more information). Modifying the parser may make this data obsolete, if something unexpected happens
modifying the parser try removing this file. Also, see force_recalculation=True argument of get_output_from_qchem() function.

Linking calculations

One of the strongest reasons to use a library like PyQchem is the ability to link different calculations together.
This means prepare inputs from output data of previous calculations. A typical example is the calculation of the normal
modes frequencies of a previously optimized structure. This can be done in PyQchem in the following way:

from pyqchem.parsers.parser_frequencies import basic_frequencies
from pyqchem.parsers.parser_optimization import basic_optimization

(...)

opt_input = QchemInput(molecule,
 jobtype='opt',
 exchange='hf',
 basis='sto-3g')

parsed_opt_data = get_output_from_qchem(opt_input, parser=basic_optimization)

opt_molecule = parsed_opt_data['optimized_molecule']

freq_input = QchemInput(opt_molecule,
 jobtype='freq',
 exchange='hf',
 basis='sto-3g')

parsed_data = get_output_from_qchem(freq_input, parser=basic_frequencies)

print(parsed_data)

In this example, the optimized structure is obtained from the parsed output of the optimization calculation.
In this parser the value of ‘optimize_molecule’ entry is already an instance of the Structure class so it can be
used directly in the frequencies calculation input.

This script is pretty convenient but it can be done even better. In order to take maximum profit of a previous
calculation, the already optimized electronic structure (molecular orbitals) can be used as a initial guess in the frequencies
calculation. To do this, it is necessary to get the orbitals coefficients, which are not present in the usual output.
PyQchem obtains the electronic structure data from the FChk file. The request of the FChk generation is done directly
in the get_output_from_qchem function by using the argument return_electronic_structure=True. This modifies the output of this function
returning two pieces of data (a list of two elements): the parsed output & the parsed FChK data:

from pyqchem.parsers.parser_frequencies import basic_frequencies
from pyqchem.parsers.parser_optimization import basic_optimization

(...)

parsed_opt_data, electronic_structure = get_output_from_qchem(opt_input,
 parser=basic_optimization,
 return_electronic_structure=True)

print(electronic_structure)

if you print electronic_structure you will notice that it is a dictionary containing the entries of a usual FChk file.
Due to the standard format of this file all data is parsed so it is not necessary to indicate a parser. The format
of this dictionary is designed for inter-operation with the different functions of PyQchem. A simple example is the use
of the molecular orbitals coefficients as an initial guess:

mo_coefficients = electronic_structure['coefficients']

freq_input = QchemInput(opt_molecule,
 jobtype='freq',
 exchange='hf',
 basis='sto-3g',
 scf_guess=mo_coefficients)

In this case, electronic_structure[‘coefficients’] contains a NxN square matrix with the coefficients of the
molecular orbitals where each row corresponds to a molecular orbital.

Practical exercises

a) Use PyQchem to optimize the water molecule (H2O) using HF and minimum basis set (STO-3G). From
the optimized structure perform 3 additional optimizations using larger 3 different basis sets: SV, DZ & TZ.
Get the scf_energies from each optimization and store the optimized structures in XYZ files.

b) (ADVANCED) Perform a frequencies calculation of the methane molecule (CH4) using PyQchem (with HF/STO-3G) and create
a movie in a XYZ file that shows the vibration of each normal mode. Print the results of the basic_frequencies parser
and investigate its contents to find the necessary information (displacements).
(https://github.com/abelcarreras/PyQchem/blob/master/pyqchem/parsers/parser_frequencies.py)

Note

To create a movie in XYZ just put all the geometries (one under the other) in the same file. This will be interpreted
in most molecular visualization software (Ex. VMD) as frames and you will be able to reproduce them as a movie.

HINT: In python you can combine two strings by the + operator. Ex:

video_xyz = frame1_xyz + frame2_xyz + frame3_xyz

The cache system

PyQchem provides a cache system to avoid redundant calculations. This system works seamless in the background storing
the data of previous calculations in a cache file (by default: calculation_data.db). This is an SQL database file that
can be opened/edited using SQL-compatible utilities. To manually access to with this file PyQchem provides a simple
ORM class. Here an example about how to use:

	Load the cache file

from pyqchem.cache import SqlCache

cache = SqlCache(filename='calculation_data.db')

	List the data

cache.list_database()

output:

 ID KEYWORD DATE
--
1837001741792534522 basic_optimization 2022-09-22 17:04:17.809714
1922769254804187209 fchk 2022-09-22 17:14:42.626054
1922769254804187209 basic_parser_qchem 2022-09-22 17:14:42.628925
861204412201835456 fchk 2022-09-22 17:15:12.654232
861204412201835456 basic_parser_qchem 2022-09-22 17:15:12.657227
924488890157922159 basic_parser_qchem 2022-09-22 17:16:31.919593

where ID is a unique identifier that corresponds to a particular input, keyword is a word to identify
a particular output associated to the input (usually corresponds to different parsers) and date contains the
information relative to the time at which the calculation was performed.

	Access to the data using ID and keyword

data = cache.retrieve_calculation_data_from_id('1837001741792534522', keyword='basic_optimization')
print(data)

data in general contains a Python dictonary with the parsed data.

Note

It is important to note that PyQchem only stores data associated to a particular parser and fchk.
The name of the parser is obtained from the parser function name. Using two or more parsers with
the same exact name may lead to issues.

If a parser is not provided in get_output_from_qchem the full output will not be stored by default.
For development purpuses it is possible to store the full output defining store_full_output=True.

full_ouput = get_output_from_qchem(opt_input, store_full_output=True)

Using this option the full output of the calculation will be stored in the database. If the calculation
is repetaed using a parser, then the output data will be parsed everytime from the stored full output
even if the same data has already been parsed. This can be usefull for developing parsers.

Note

Keep in mind that using store_full_output=True may rapidly increase the size of the database file.

It is possible to change the name of the database file to be used for a particular calculation.
This may be usefull to run multiple simultaneours calculations in the same directory.

from pyqchem.qchem_core import redefine_calculation_data_filename
redefine_calculation_data_filename('database_file.db')

Database corruption

Ocassionaly, running multiple simulateneous calculations using the same database file, may lead to corruption
of the database file. This may also happend if the calculation cashes during the I/O access to the file.
If this happends PyQchem provides a method to fix this file recovering (at least partially) the non corrupted
data of the data of the file:

	Check the integrity of the datafile

cache.integrity_check()

	Recover the data in the correupted file and store them in a new database file

cache.fix_database('recovered_database.db')

Public API

QcInput

	
class pyqchem.qc_input.QchemInput(molecule, jobtype='sp', method=None, exchange=None, correlation=None, unrestricted=None, basis='6-31G', basis2=None, thresh=14, scf_convergence=8, max_scf_cycles=50, scf_algorithm='diis', purecart=None, ras_roots=None, ras_do_hole=True, ras_do_part=True, ras_act=None, ras_act_orb=None, ras_elec=None, ras_elec_alpha=None, ras_elec_beta=None, ras_occ=None, ras_spin_mult=1, ras_sts_tm=False, ras_fod=False, ras_natorb=False, ras_natorb_state=None, ras_print=1, ras_diabatization_scheme=None, ras_diabatization_states=None, ras_guess=None, use_reduced_ras_guess=False, ras_omega=400, ras_srdft=None, ras_srdft_damp=0.5, ras_srdft_exc=None, ras_srdft_cor=None, ras_srdft_spinpol=0, calc_soc=False, state_analysis=False, ee_singlets=False, ee_triplets=False, cc_trans_prop=False, cc_symmetry=True, cc_e_conv=None, cc_t_conv=None, eom_davidson_conv=5, cis_convergence=6, cis_n_roots=None, cis_singlets=False, cis_triplets=False, cis_ampl_anal=False, loc_cis_ov_separate=False, er_cis_numstate=0, boys_cis_numstate=0, cis_diabath_decompose=False, max_cis_cycles=30, localized_diabatization=None, sts_multi_nroots=None, cc_state_to_opt=None, cis_state_deriv=None, RPA=False, set_iter=30, gui=0, geom_opt_dmax=300, geom_opt_update=-1, geom_opt_linear_angle=165, geom_opt_coords=-1, geom_opt_tol_gradient=300, geom_opt_tol_displacement=1200, geom_opt_tol_energy=100, geom_opt_max_cycles=50, geom_opt_constrains=None, solvent_method=None, solvent_params=None, pcm_params=None, rpath_coords=0, rpath_direction=1, rpath_max_cycles=20, rpath_max_stepsize=150, rpath_tol_displacement=5000, symmetry=True, sym_ignore=False, nto_pairs=None, n_frozen_core=None, n_frozen_virt=None, n_frozen_virtual=0, mom_start=False, reorder_orbitals=None, namd_nsurfaces=None, scf_print=None, scf_guess=None, scf_energies=None, scf_density=None, scf_guess_mix=False, hessian=None, sym_tol=5, mem_total=2000, mem_static=64, skip_scfman=False, extra_rem_keywords=None, extra_sections=None)

	Handles the Q-Chem input info

	
get_copy()

	Get a copy of the input

	Returns

	

	
get_txt()

	get qchem input in plain text

	Return string

	qchem input in plain text

	
update_input(dictionary)

	Update the input from data in a dictionary
Note: already existing parameters will be overwritten

	Parameters

	dictionary – parameters to add

	
pyqchem.qc_input.normalize_values(value)

	Set all string values (including keys and values of dictionaries) to lower case

	Parameters

	value – the values

	Returns

	normalized values

Structure

	
class pyqchem.structure.Structure(coordinates=None, symbols=None, atomic_numbers=None, connectivity=None, charge=0, multiplicity=1, name=None)

	Structure object containing all the geometric data of the molecule

	
alpha_electrons

	returns the alpha electrons

	Returns

	number of alpha electrons

	
beta_electrons

	returns the number of beta electrons

	Returns

	number of beta electrons

	
charge

	returns the charge
:return: the charge

	
get_atomic_masses()

	get the atomic masses of the atoms of the molecule

	Returns

	list of atomic masses

	
get_atomic_numbers()

	get the atomic numbers of the atoms of the molecule

	Returns

	list with the atomic numbers

	
get_connectivity(thresh=1.2)

	get the connectivity as a list of pairs of indices of atoms
from atomic radii

	Parameters

	thresh – radii threshold used to determine the connectivity

	Returns

	

	
get_coordinates(fragment=None)

	gets the cartesian coordinates

	Parameters

	fragment – list of atoms that are part of the fragment

	Returns

	coordinates list

	
get_number_of_atoms()

	get the number of atoms

	Returns

	number of atoms

	
get_point_symmetry()

	Returns the point group of the molecule using pymatgen

	Returns

	point symmetry label

	
get_symbols()

	get the atomic element symbols of the atoms of the molecule

	Returns

	list of symbols

	
get_valence_electrons()

	get number of valence electrons

	Returns

	number of valence electrons

	
get_xyz(title='')

	generates a XYZ formatted file

	Parameters

	title – title of the molecule

	Returns

	string with the formatted XYZ file

	
multiplicity

	returns the multiplicity

	Returns

	the multiplicity

	
name

	returns the name
:return: structure name

	
number_of_electrons

	returns the total number of electrons

	Returns

	number of total electrons

	
set_coordinates(coordinates)

	sets the cartessian coordinates

	Parameters

	coordinates – cartesian coordinates matrix

QcCore

	
pyqchem.qchem_core.generate_additional_files(input_qchem, work_dir)

	Generate additional files on scratch (work dir) for special calculations

	Parameters

	
	input_qchem – QChem input object

	work_dir – scratch directory

	
pyqchem.qchem_core.get_output_from_qchem(input_qchem, processors=1, use_mpi=False, scratch=None, read_fchk=False, return_electronic_structure=False, parser=None, parser_parameters=None, force_recalculation=False, fchk_only=False, store_full_output=False, delete_scratch=True, remote=None, scratch_read_level=0)

	Runs qchem and returns the output in the following format:

	
	If return_electronic_structure is requested:

	[output, parsed_fchk]

	
	If return_electronic_structure is not requested:

	[output]

	Note: if parser is set then output contains a dictionary with the parsed info

	else output contains the q-chem output in plain text

	Parameters

	
	input_qchem – QcInput object containing the Q-Chem input

	processors – number of threads/processors to use in the calculation

	use_mpi – If False use OpenMP (threads) else use MPI (processors)

	scratch – Full Q-Chem scratch directory path. If None read from $QCSCRATCH

	return_electronic_structure – if True, returns the parsed FCHK file containing the electronic structure

	read_fchk – same as return_electronic_structure (to be deprecated)

	parser – function to use to parse the Q-Chem output

	parser_parameters – additional parameters that parser function may have

	force_recalculation – Force to recalculate even identical calculation has already performed

	fchk_only – If true, returns electronic structure data from cache ignoring output (to be deprecated)

	remote – dictionary containing the data for remote calculation (beta)

	store_full_output – store full output in plain text in pkl file

	delete_scratch – delete all scratch files when calculation is finished

	Returns

	output [, electronic_structure]

	
pyqchem.qchem_core.local_run(input_file_name, work_dir, fchk_file, use_mpi=False, processors=1)

	Run Q-Chem locally

	Parameters

	
	input_file_name – Q-Chem input file in plain text format

	work_dir – Scratch directory where calculation run

	fchk_file – filename of fchk

	use_mpi – use mpi instead of openmp

	Returns

	output, err: Q-Chem standard output and standard error

	
pyqchem.qchem_core.local_run_stream(input_file_name, work_dir, fchk_file, use_mpi=False, processors=1, print_stream=True)

	Run Q-Chem locally

	Parameters

	
	input_file_name – Q-Chem input file in plain text format

	work_dir – Scratch directory where calculation run

	fchk_file – filename of fchk

	use_mpi – use mpi instead of openmp

	print_stream – set True to print output stream during execution

	Returns

	output, err: Q-Chem standard output and standard error

	
pyqchem.qchem_core.parse_output(get_output_function)

	to be deprecated

	Parameters

	get_output_function –

	Returns

	parsed output

	
pyqchem.qchem_core.remote_run(input_file_name, work_dir, fchk_file, remote_params, use_mpi=False, processors=1)

	Run Q-Chem remotely

	Parameters

	
	input_file – Q-Chem input file in plain text format

	work_dir – Scratch directory where calculation run

	fchk_file – filename of fchk

	remote_params – connection parameters for paramiko

	use_mpi – use mpi instead of openmp

	Returns

	output, err: Q-Chem standard output and standard error

	
pyqchem.qchem_core.retrieve_additional_files(input_qchem, data_fchk, work_dir, scratch_read_level=0)

	retrieve data from files in scratch data (on development, currently for test only)

	Parameters

	
	input_qchem – QChem input object

	data_fchk – FCHK parsed dictionary

	work_dir – scratch directory

	scratch_read_level – defines what data to retrieve

	Returns

	dictionary with additional data

Utils

	
pyqchem.utils.get_inertia(structure)

	returns the inertia moments and main axis of inertia (in rows)

	Parameters

	structure – Structure object containg the molecule

	Returns

	eigenvalues, eigenvectors

	
pyqchem.utils.get_order_states_list(states, eps_moment=0.1, eps_energy=0.05)

	set higher dipole moment states first if energy gap is lower than eps_energy

	
pyqchem.utils.get_plane(coords, direction=None)

	Returns the center and normal vector of tha plane formed by a list of atomic coordinates

	Parameters

	coords – List of atomic coordinates

	Returns

	center, normal_vector

	
pyqchem.utils.get_sdm(matrix_1, matrix_2)

	get differences square matrix between to matrices
:param matrix_1: the matrix 1
:param matrix_2: the matrix 2
:return: difference square matrix

	
pyqchem.utils.is_rasci_transition(configuration, reference, n_electron=1, max_jump=10)

	Determine if a configuration corresponds to a transition of n_electron

	Parameters

	
	configuration – dictionary containing the configuration to be analyzed

	reference – reference configuration (in general lowest energy Slater determinant)

	n_electron –

	max_jump – Restrict to transitions with jumps less or equal to max_jump orbitals

	Returns

	True if conditions are met, otherwise False

	
pyqchem.utils.is_transition(configuration, reference, n_electron=1, max_jump=10)

	Determine if a configuration corresponds to a transition of n_electron

	Parameters

	
	configuration – dictionary containing the configuration to be analyzed

	reference – reference configuration (in general lowest energy Slater determinant)

	n_electron – number of electrons in the transition

	max_jump – Restrict to transitions with jumps less or equal to max_jump orbitals

	Returns

	True if conditions are met, otherwise False

	
pyqchem.utils.reorder_coefficients(occupations, coefficients)

	Reorder the coefficients according to occupations. Occupated orbitals will be grouped at the beginning
non occupied will be attached at the end

	Parameters

	
	occupations – list on integers (0 or 1) or list of Boolean

	coefficients – dictionary containing the molecular orbitals coefficients {‘alpha’: coeff, ‘beta:’ coeff}.
coeff should be a list of lists (Norb x NBas)

	Returns

	

	
pyqchem.tools.get_geometry_from_pubchem(entry, type='name')

	Get structure form PubChem database

	Parameters

	
	entry – entry data

	type – data type: ‘name’, ‘cid’

	Returns

	Structure

	
pyqchem.tools.plot_rasci_state_configurations(states)

	Prints
:param states: parsed data (excited states) dictionary entry from RASCI calculation
:return: None

	
pyqchem.tools.print_excited_states(parsed_data, include_conf_rasci=False, include_mulliken_rasci=False)

	Prints excited states in nice format. It works for CIS/TDDFT/RASCI methods

	Parameters

	
	parsed_data – parsed data (excited states) dictionary entry from CIS/RASCI/TDDFT calculation

	include_conf_rasci – print also configuration data (only RASCI method)

	include_mulliken_rasci – print also mulliken analysis (only RASCI method)

	Returns

	None

	
pyqchem.tools.rotate_coordinates(coordinates, angle, axis, atoms_list=None, center=(0, 0, 0))

	Rotate the coordinates (or range of coordinates) with respect a given axis

	Parameters

	
	coordinates – coordinates to rotate

	angle – rotation angle in radians

	axis – rotation axis

	atoms_list – list of atoms to rotate (if None then rotate all)

	Returns

	rotated coordinates

	
pyqchem.tools.submit_notice(message, service='pushbullet', pb_token=None, sp_url=None, gc_key=None, gc_token=None, gc_thread=None, slack_token=None, slack_channel=None)

	Submit a notification using webhooks

	Parameters

	
	message – The message to send

	service – pushbullet, samepage, google_chat

	pb_token – pushbullet token

	sp_url – samepage url

	gc_key – google chat key

	gc_token – google chat token

	gc_thread – google chat thread

	slack_token – slack bot token (xoxb-xxx.xxx.xxx),

	slack_channel – slack channel

	Returns

	server response

	
pyqchem.tools.geometry.get_angle(coordinates, atoms)

	Compute the angle between 3 atoms

	Parameters

	
	coordinates – list of coordinates of the molecule

	atoms – list of 3 atom indices to use to calculate the angle (from 1 to N)

	Returns

	the angle

	
pyqchem.tools.geometry.get_dihedral(coordinates, atoms)

	Compute the dihedral angle between 4 atoms

	Parameters

	
	coordinates – list of coordinates of the molecule

	atoms – list of 4 atom indices to use to calculate the dihedral angle (from 1 to N)

	Returns

	the dihedral angle

	
pyqchem.tools.geometry.get_distance(coordinates, atoms)

	Compute the distance between 2 atoms

	Parameters

	
	coordinates – list of coordinates of the molecule

	atoms – list of 2 atom indices to use to calculate the distance (from 1 to N)

	Returns

	the distance

	
pyqchem.tools.geometry.unit_vector(vector)

	Compute unit vector from general vector

	Parameters

	vector – the vector

	Returns

	the unit vector

Troubleshooting

In recent versions of macOS, the SIP system may prevent python to access DYLD_LIBRARY_PATH environment
variable in sub-shells (https://cmsdk.com/python/python-subprocess-call-can-not-find-dylib-in-mac.html).
This can be an issue in Q-Chem when compiled using mkl appearing the following error message during execution

dyld: Library not loaded: @rpath/libmkl_intel_lp64.dylib

The workaround without disabling the SIP system is to symbolic link the library libmkl_intel_lp64.dylib to

/usr/local/lib

which is used by default to find the needed libraries.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyqchem	

 	
 	
 pyqchem.qc_input	

 	
 	
 pyqchem.qchem_core	

 	
 	
 pyqchem.structure	

 	
 	
 pyqchem.tools	

 	
 	
 pyqchem.tools.geometry	

 	
 	
 pyqchem.utils	

Index

 A
 | B
 | C
 | G
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | U

A

 	
 	alpha_electrons (pyqchem.structure.Structure attribute)

B

 	
 	beta_electrons (pyqchem.structure.Structure attribute)

C

 	
 	charge (pyqchem.structure.Structure attribute)

G

 	
 	generate_additional_files() (in module pyqchem.qchem_core)

 	get_angle() (in module pyqchem.tools.geometry)

 	get_atomic_masses() (pyqchem.structure.Structure method)

 	get_atomic_numbers() (pyqchem.structure.Structure method)

 	get_connectivity() (pyqchem.structure.Structure method)

 	get_coordinates() (pyqchem.structure.Structure method)

 	get_copy() (pyqchem.qc_input.QchemInput method)

 	get_dihedral() (in module pyqchem.tools.geometry)

 	get_distance() (in module pyqchem.tools.geometry)

 	get_geometry_from_pubchem() (in module pyqchem.tools)

 	
 	get_inertia() (in module pyqchem.utils)

 	get_number_of_atoms() (pyqchem.structure.Structure method)

 	get_order_states_list() (in module pyqchem.utils)

 	get_output_from_qchem() (in module pyqchem.qchem_core)

 	get_plane() (in module pyqchem.utils)

 	get_point_symmetry() (pyqchem.structure.Structure method)

 	get_sdm() (in module pyqchem.utils)

 	get_symbols() (pyqchem.structure.Structure method)

 	get_txt() (pyqchem.qc_input.QchemInput method)

 	get_valence_electrons() (pyqchem.structure.Structure method)

 	get_xyz() (pyqchem.structure.Structure method)

I

 	
 	is_rasci_transition() (in module pyqchem.utils)

 	
 	is_transition() (in module pyqchem.utils)

L

 	
 	local_run() (in module pyqchem.qchem_core)

 	
 	local_run_stream() (in module pyqchem.qchem_core)

M

 	
 	multiplicity (pyqchem.structure.Structure attribute)

N

 	
 	name (pyqchem.structure.Structure attribute)

 	
 	normalize_values() (in module pyqchem.qc_input)

 	number_of_electrons (pyqchem.structure.Structure attribute)

P

 	
 	parse_output() (in module pyqchem.qchem_core)

 	plot_rasci_state_configurations() (in module pyqchem.tools)

 	print_excited_states() (in module pyqchem.tools)

 	pyqchem.qc_input (module)

 	
 	pyqchem.qchem_core (module)

 	pyqchem.structure (module)

 	pyqchem.tools (module)

 	pyqchem.tools.geometry (module)

 	pyqchem.utils (module)

Q

 	
 	QchemInput (class in pyqchem.qc_input)

R

 	
 	remote_run() (in module pyqchem.qchem_core)

 	reorder_coefficients() (in module pyqchem.utils)

 	
 	retrieve_additional_files() (in module pyqchem.qchem_core)

 	rotate_coordinates() (in module pyqchem.tools)

S

 	
 	set_coordinates() (pyqchem.structure.Structure method)

 	
 	Structure (class in pyqchem.structure)

 	submit_notice() (in module pyqchem.tools)

U

 	
 	unit_vector() (in module pyqchem.tools.geometry)

 	
 	update_input() (pyqchem.qc_input.QchemInput method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 PyQchem

 		
 Introduction

 		
 Main features

 		
 Installation

 		
 Requirements

 		
 Install

 		
 Q-Chem setup

 		
 Get started

 		
 Defining molecule

 		
 Preparing Q-Chem input

 		
 Running calculations

 		
 Reusing data efficiently

 		
 Advanced input

 		
 Custom guess

 		
 Custom basis set

 		
 Dual basis set

 		
 Usage of Solvent

 		
 Symmetry

 		
 Orbital classification

 		
 Error handling

 		
 Extra information

 		
 Electronic structure

 		
 Tutorial

 		
 Execution

 		
 Basic concepts

 		
 Practical exercises

 		
 Parsing data

 		
 Practical exercises

 		
 Linking calculations

 		
 Practical exercises

 		
 The cache system

 		
 Database corruption

 		
 Public API

 		
 QcInput

 		
 Structure

 		
 QcCore

 		
 Utils

 		
 Troubleshooting

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

